Jaunt

Feasibility Study of Alternative Fueled Buses Advisory Committee Meeting 2: September 22, 2022

Expect More. Experience Better.

Today's Objectives

Understand the potential impacts of alternative propulsion technologies to Jaunt.

Generate ideas to leverage the highest-value opportunities and work around barriers.

Agenda

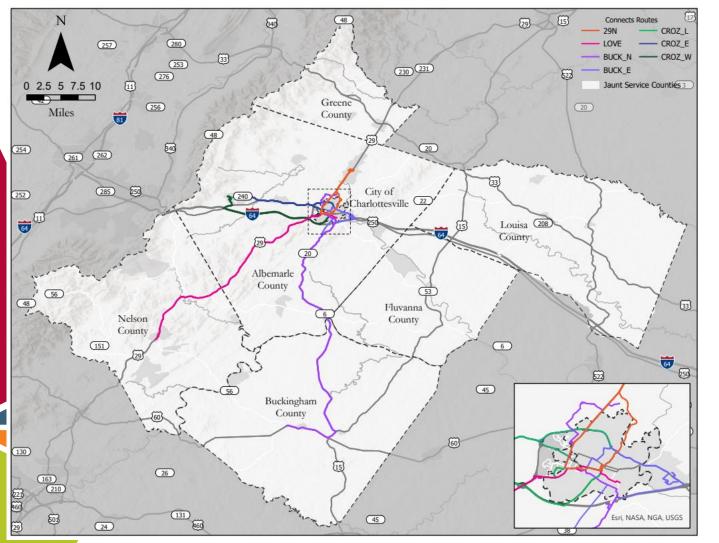
- Project Goals Refresher
- Background and Analysis
 - Project Status to Date
 - Current System and Service Area
 - Assumptions and Range Analysis
- Technology Opportunities and Barriers
 - Battery Electric (EV)
 - Hydrogen Fuel Cell (FCEV)
 - Compressed Natural Gas or Renewable Natural Gas (CNG or RNG)

Kimley **Whorn**

- Questions & Discussion
- Next Steps

Project Goals

- Achieve 45% GHG reduction by 2030; net zero by 2050
- Determine a preferred cleaner fuel type for Jaunt
 - Consider trade-offs including operating and capital cost, emissions impact, and operational viability
 - Balance the current level of service with practicality of low or no emissions vehicles (minimize impact to operations)
 - Consider well-to-wheel impact of propulsion technology on emissions
- Determine high level implementation strategy and timeline of the preferred fuel type


Background and Analysis

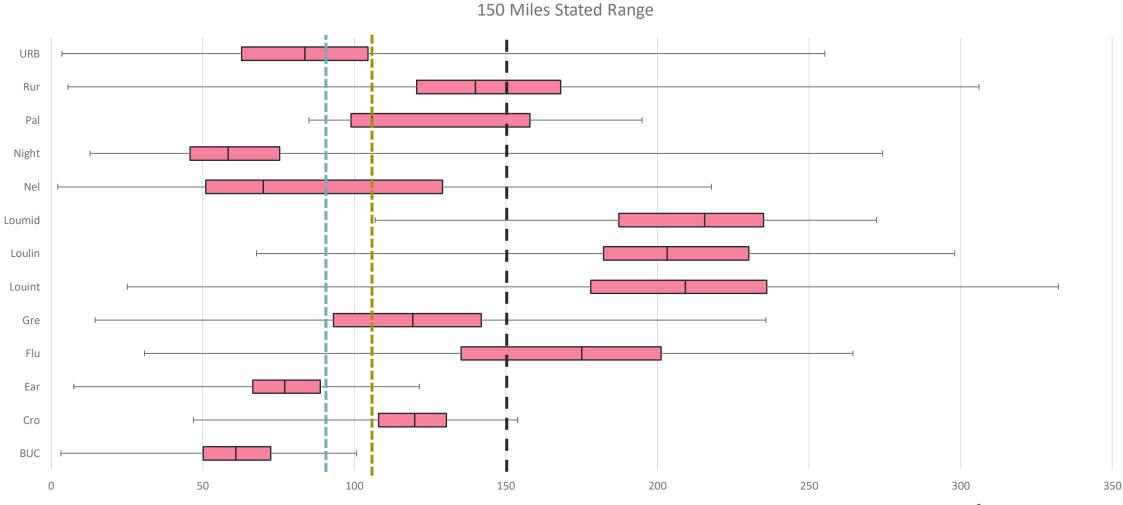
Status to Date

- More than halfway through the feasibility study
- Conducted interview with two peer agencies: SARTA and SunLine
- Conducting interviews with utility providers
- Developing scenarios and cost analysis
- Preparing lifecycle greenhouse gas emissions

Jaunt's Current System

- Serves Charlottesville and six surrounding counties
- 7 fixed-route commuter service lines
- 19 demand response run classes
 - ADA Service
 - Links from the counties to Charlottesville
 - Circulator services within counties
 - Kimley »Horn 7

Analysis Assumptions

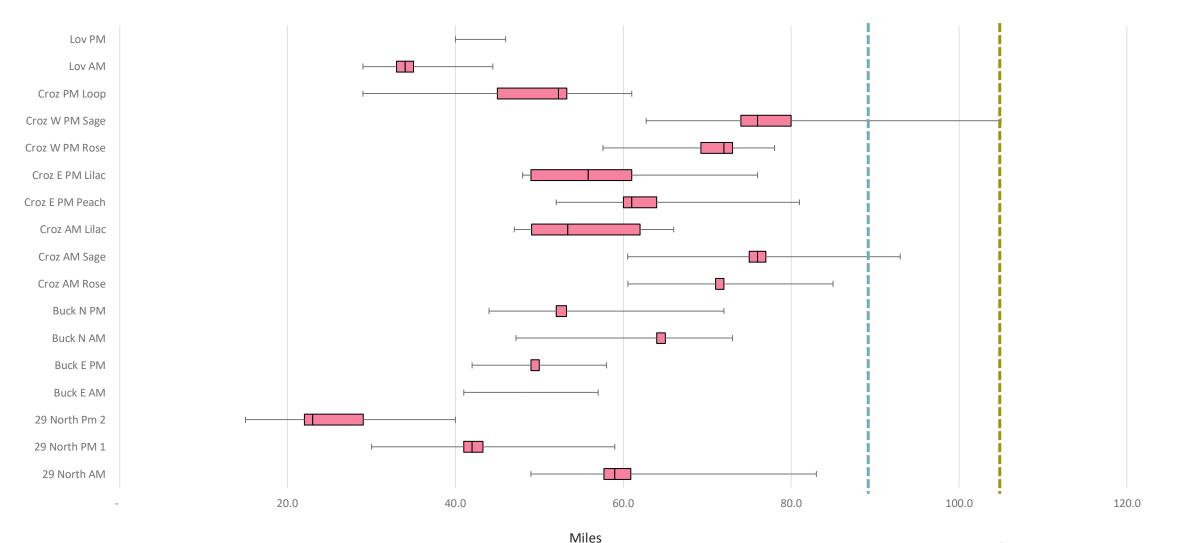

- Analysis was based on Jaunt's 2021/2022 existing conditions
 - 2022 Fleet and Run Classes
- Assumptions based on 2022 market trends and technology capabilities
- Analysis Assumptions
 - EV range of 100-150 miles
 - 30% and 40% reductions in range were used as benchmarks
 - Reductions were determined through industry standards and literature reviews

Kimley »Horn

• CNG and FCEV range of 300 miles

Demand Response BEV Performance

Stated Range30% Reduction40% Reduction


Kimley »Horn 10

Miles

Fixed-Route BEV Performance

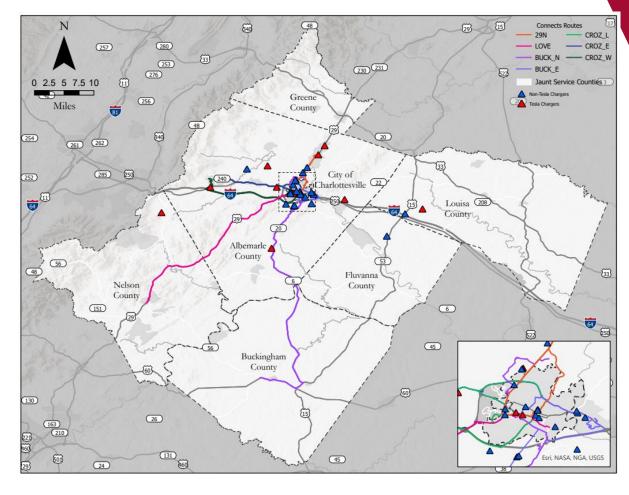
 30% Reduction
 40% Reduction

150 Mile Stated Range

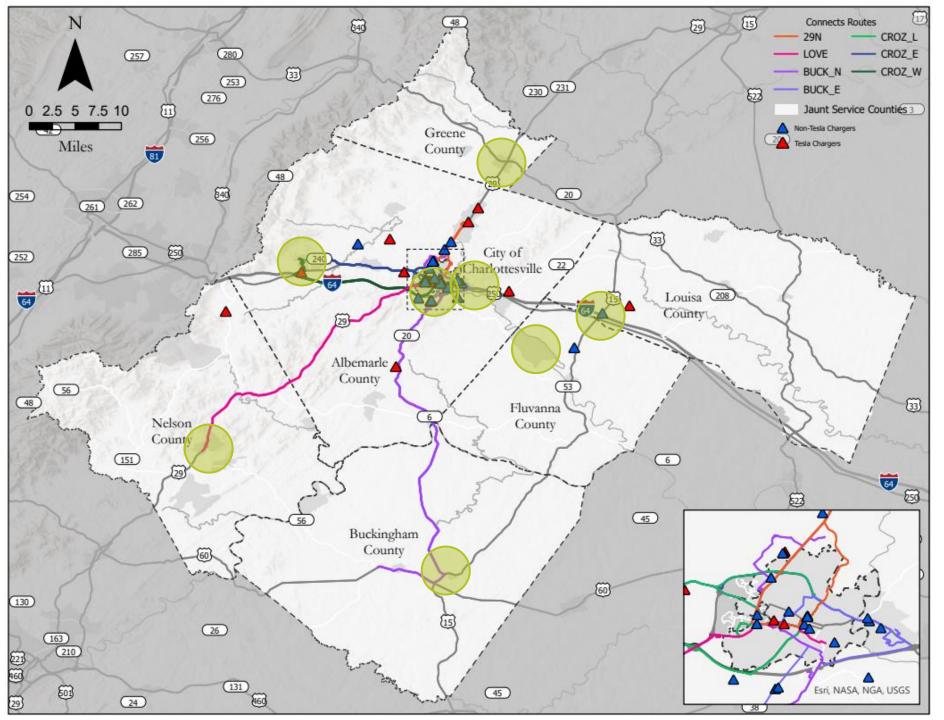
Kimley»Horn 11

Technology Opportunities and Barriers

Battery Electric Vehicles



- Opportunities
 - Most (if not all) *fixed route* service could be accommodated with commercially-ready EVs
 - Technology is scalable to number of vehicles deployed
- Barriers
 - Range Most *paratransit* service would **not** be completed with the same number of vehicles as today
 - Charging operations would require additional space and staff oversight
- Items for Discussion
 - What are opportunities for on-route charging locations and/or additional depots in each service area?
 - What is the desire to procure additional vehicles?



Battery Electric Charging Locations

- 28 public, non-Tesla charger locations
 - 64 Total Chargers
 - 5 Level One chargers
 - 40 Level Two chargers
 - 19 DC Fast Chargers
- Centered around the City of Charlottesville
- Most are available 24 hours a day

Kimley **Horn** 14

Potential Charging Locations

Jaunt County	Community			
Albemarle	Crozet			
west				
Albemarle	Pantops			
east	(west of I-64/US250)			
Buckingham	Dillwyn			
	(Highway 20/US15)			
Fluvanna	Lake Monticello			
Greene	Ruckersville			
Louisa	Zion Crossroads			
	(I-64/US15)			
Nelson	Lovingston			
Charlottesville	Jaunt HQ			
(City)				

Kimley **Horn** 16

Hydrogen Fuel Cell Electric Vehicles

- Opportunities
 - All fixed-route and demand response service could be accommodated with FCEVs
 - Hydrogen deployment is more cost-effective for systems with more vehicles
- Barriers
 - Sourcing no distributors or commercial fueling stations in the Charlottesville area
 - Cost hydrogen has a significant upfront costs with fueling/storage infrastructure and vehicle procurement
 - Upstream Emissions Not all hydrogen production methods have zero carbon footprint and most commercial sources use natural gas reformation
- Items for Discussion
 - Could Jaunt or partners accommodate a local hydrogen production plant?
 - Is the hydrogen vehicle market mature enough for implementation?

Kimley **Horn** 17

Compressed and Renewable Natural Gas

- Opportunities
 - All fixed-route and demand response service could be accommodated with CNG vehicles
 - CNG is a widely-adopted technology
 - There may be renewable sources which could have *negative* carbon emissions
- Barriers
 - CNG is not zero emissions
 - Most renewable natural gas is mixed into the distribution network
- Items for Discussion
 - What is the perception of using natural gas as a fuel?
 - Would near-term deployment be worth installation if equipment could be later converted for hydrogen?

Comparison of Technologies

	Scenario	Number of Vehicles	Emissions Reduction		Vehicle Costs	Facility Costs	Operational Costs (Fuel+Maintenance)
	Current	108	_		\$	-	\$\$
- +	Battery Electric	157	••••	••••	\$\$\$\$	\$\$\$\$	\$
	Battery Electric w/ Fast Charging	108-114*	••••	••••	\$\$\$	\$\$\$\$\$	\$\$
H ₂	Hydrogen	108	••••	•••	\$\$\$	\$\$\$	\$\$\$
	CNG/RNG	108	••••	••	\$	\$\$	\$\$
-			\uparrow	$\widehat{1}$	*As	sumes stan	dby vehicle in each County

Kimley »Horn 19

Long-term

Questions & Discussion

Questions for Discussion

- Which opportunities seem most feasible to act on?
- Which barriers seem the most insurmountable?
- Is Jaunt willing to acquire additional land?
- How could partnerships leverage opportunities or remove barriers?
- Is there an opportunity to use multiple technologies to achieve Jaunt's goals?

Next Steps

- Conduct an interview with Charlottesville Utilities
- Finalize transition scenarios
 - Develop numerical Greenhouse Gas emission comparison
 - Develop relative cost comparison
- Prepare initial prioritization
- Return to the Advisory Committee in November* for Prioritization and Recommendations